

High Capacity Single Table Performance Design Using

Partitioning in Oracle or PostgreSQL

by Travis Parker and Paul Ritchey

ARL-CR-0689 March 2012

Prepared by
ICF International

9300 Lee Highway,
Fairfax, VA 22031-1207 USA

Under Contract W911QX-07-F-0023

COR:
U.S. Army Research Laboratory

RDRL-CI
Linda Duchow

2800 Powder Mill Road
Adelphi, MD 20783-1197

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005

ARL-CR-0689 March 2012

High Capacity Single Table Performance Design Using
Partitioning in Oracle or PostgreSQL

Travis Parker and Paul Ritchey

Computational and Information Sciences Directorate, ARL

Prepared by
ICF International

9300 Lee Highway,
Fairfax, VA 22031-1207 USA

Under Contract W911QX-07-F-0023

COR:
U.S. Army Research Laboratory

RDRL-CI
Linda Duchow

2800 Powder Mill Road
Adelphi, MD 20783-1197

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

March 2012
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

January to October 2011
4. TITLE AND SUBTITLE

High Capacity Single Table Performance Design Using Partitioning in Oracle or
PostgreSQL

5a. CONTRACT NUMBER

W911QX-07-F-0023
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Travis Parker and Paul Ritchey
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

ICF International
9300 Lee Highway
Fairfax, VA 22031-1207 USA

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-CIN-D
Aberdeen Proving Ground, MD 21005

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

ARL-CR-0689

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes the design rationale and resulting performance seen in a single server (non-clustered) database with an
extremely large table containing in excess of 11 billion records. The original research and testing had been performed on a
much smaller scale into the tens of millions of records around fall 2001, with an expectation that it would be near to the
projected maximum number of records. In summer 2003, after those initial results were used to design a table still in use in
production today, a similar table with a much larger data set was needed and the basic research was applied again to the new
table. Initially, it was expected the number of records would peak close to half a billion; however, due to continuous and
unexpected growth, the table now contains more than 11 billion records and is expected to grow more as the storage capacity
is increased on the database server.

15. SUBJECT TERMS

Oracle, postgres, performance, partitioning

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

 OF
 ABSTRACT

UU

18. NUMBER
 OF

 PAGES

22

19a. NAME OF RESPONSIBLE PERSON

Travis Parker
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

(410) 278-0900
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

1.1 Oracle Overview..1

1.2 Oracle Database Data Storage ...2

1.3 Oracle Tables and Partitioning ..2

1.4 Oracle Indexing ...3

1.5 Oracle Production Implementation ...5

2. PostgreSQL 7

2.1 PostgreSQL Database Data Storage ..7

2.2 PostgreSQL Table Partitioning ...9

3. Performance Comparisons 10

4. Additional Key Performance Indicators (KPIs) 13

5. Conclusion 14

List of Symbols, Abbreviations, and Acronyms 15

Distribution List 16

iv

List of Figures

Figure 1. Oracle storage mechanism. ..2

Figure 2. Oracle table partitioning. ...3

Figure 3. Oracle locally partitioned index. ...5

Figure 4. PostgreSQL storage mechanism. ...8

Figure 5. PostgreSQL storage mechanism—tablespaces. ...9

Figure 6. PostgreSQL table partitioning. ..10

Figure 7. Time to seek and return one record. ..13

List of Tables

Table 1. Performance testing results. ..11

Table 2. Totals records available during performance testing. ...11

Table 3. PostgreSQL scalability performance (non-cached). ...12

Table 4. Additional issues that should be evaluated when comparing Oracle and
PostgreSQL. ...14

1

1. Introduction

The Computer and Information Sciences Directorate provides network defense efforts to the U.S.
Army Research Laboratory (ARL). These efforts require the ability to index and search a very
large number of network traffic records and associated findings. A high-capacity, high-
performance database is well suited to this task.

The table partitioning and indexing concepts described in this report were originally a result of
needing near instantaneous responses as possible from the database. In order to meet that
requirement, we started exploring the additional features and capabilities provided by Oracle to
determine what would provide the performance we needed with the number of records we
expected to keep in the table. After successfully applying our research to production for several
years, we began evaluating the possibility of changing our preferred database software, Oracle,
in order to reduce yearly operating costs. After selecting PostgreSQL as the likely replacement,
testing needed to be performed to ensure it would meet our performance requirements.

Historically, PostgreSQL had a reputation of having sluggish1 performance as compared to other
databases, but had seen improvements2 over the years3. Other benchmarks testing performance
on multiple cores4 showed PostgreSQL scaling better on more cores than MySQL. Before
migrating a critical part of our database architecture over to PostgreSQL, we had to first apply
the design and concepts developed while using Oracle as best we could with PostgreSQL in
order to obtain the best performance possible and then test it using queries similar to those users
would be executing to see if we could obtain the performance level we needed to meet.

This report provides details on our original implementation using Oracle, and then how those
concepts and experiences were applied to PostgreSQL, wrapping up with the performance results
we were able to obtain.

1.1 Oracle Overview

The commercially available Oracle Database is known for its reliability and scalability. Several
features that can enhance the scalability and performance for large tables are carefully leveraging
the partitioning and tablespace features in conjunction with bitmap indexes. The combination of
these features, when implemented with careful consideration of the primary queries that will be

1PostgreSQL Publishes First Real Benchmark. http://it.toolbox.com/blogs/database-soup/postgresql-publishes-first-real-

benchmark-17470 (November 2011).
2Open Source PostgreSQL Trails Oracle in Benchmark, But Not By Much.

http://www.informationweek.com/news/201001901?subSection=Open+Source (November 2011).
3MySQL vs PostgreSQL Benchmarks. http://www.randombugs.com/linux/mysql-postgresql-benchmarks.html (November

2011)..
4Database Test 8-way Opteron. http://tweakers.net/reviews/674/6/database-test-8-way-opteron-scaling-behaviour-from-4-to-

8-sockets.html (November 2011).

2

executed, allow one to attain acceptable response times from the database. As an example of the
performance that can be obtained, in our Oracle production environment, executing a query that
returns 1,556 rows from a table containing over 11 billion records takes approximately 11 s from
disk and approximately 4 s if the data is cached in memory. The basic research that went into the
design of our tables and indexing was originally performed using Oracle 8i. The production
implementation has remained unchanged from Oracle versions 8i through 10g.

1.2 Oracle Database Data Storage

To understand the implementation details used in our Oracle production environment, a basic
understanding of how data are stored and organized in an Oracle database is needed as well as an
explanation of the terminology that is used.

Every table created in an Oracle database is assigned to and stored in a tablespace (figure 1). A
tablespace is a logical layer that allows one to break up the storage for all of the tables assigned
to that tablespace into one or more data files. There is no direct linkage between tables and data
files, so there is no control over which data files the rows in a table are stored in. When creating
the data files that make up a tablespace, one must specify which directory (or device) the file is
stored on. Data files cannot be split across multiple directories or devices—the entire data file is
stored in one location only. Data files can be set to a specific size or allowed to grow
dynamically as needed and as space permits.

Logical

Table 1 Table 2 Table …

Data File 1 Data File 2

Hardware

Physical

Figure 1. Oracle storage mechanism.

1.3 Oracle Tables and Partitioning

In most situations, one creates and uses standard tables—the table is created, belongs to a
tablespace, and all records are inserted into it and written physically to disk in the data files

3

belonging to the tablespace. This basic mechanism, coupled with careful search and query
language (SQL) statement tuning and hardware tuning, can scale well up to a certain point,
depending on the hardware being used (central processing unit [CPU] speed, available memory
for caching, and number and speed of hard drives). Once one reaches the point where the
response time isn’t sufficient, breaking the table into partitions may be the solution, depending
on how the data are queried. Partitioning a table allows one to physically and logically break the
table up into smaller chunks, yet it still looks and acts like a single table from the perspective of
developers and users.

When creating a partitioned table (figure 2), the table is defined in the same fashion as a regular
table with the addition of how the table is partitioned and the storage (tablespace) for each
partition. The key to maximizing performance is to understand that each partition can be stored
in its own tablespace on a different physical device and the partitioning scheme should match the
most-used queries. The database can also be configured to launch multiple threads when
querying a partitioned table, which will also significantly reduce response time.

Tablespace 1

Data File 1 Data File 2

Tablespace 2

Data File 1 Data File 2

Partition 1 Partition 2 ...

Figure 2. Oracle table partitioning.

1.4 Oracle Indexing

Similar to database tables, the performance of indexes can be excellent until one reaches a
certain threshold, especially in situations where a full index scan is required. Once the threshold
is reached, using a partitioned index can be of great benefit. A partitioned index works very
similarly to partitioned tables with one exception: the index can match the partitioning to which
the table belongs (locally partitioned) or it can use a completely different partitioning
configuration (globally partitioned). While there may be cases where using a globally

4

partitioned index may be beneficial, our usage has been limited solely to locally partitioned
indexes because they are maintained automatically, which is critical for the volume and volatility
of data being stored. When using globally indexed partitions, care needs to be taken to avoid a
few specific SQL commands that will cause a partition(s) in the index to be marked invalid,
thereby requiring the index to be rebuilt and potentially causing significant application
performance issues while it’s not available for use.

When a partitioned index is used, multiple threads can be used to read and process the partitions
thereby reducing response time significantly. In addition, Oracle’s optimizer will automatically
skip processing partitions in the index that will not contain results based on the partitioning
scheme used and the query. For example, if the index is partitioned based on the month and the
query is only interested in records where the month is December, the optimizer will
automatically ignore the partitions for the months January through November. By eliminating
entire partitions in this manner the optimizer can significantly reduce the amount of physical disk
input/output (I/O) that must be performed.

Note: If performance using partitioned indexes isn’t as expected, one should analyze the
execution plan using the EXPLAIN PLAN command to sanity check the execution plan.
Although Oracle’s optimizer is excellent, sometimes it may not choose to use a partitioned index.
In this situation, providing a hint embedded in the SQL query command pointed the optimizer in
the correct direction and the partitioned index was incorporated, significantly decreasing
response time.

Figure 3 shows an Oracle locally partitioned index.

5

Figure 3. Oracle locally partitioned index.

By default when a new index is created in Oracle without specifying the type of index, it will be
a b-tree index. Oracle’s implementation of the b-tree index is a workhorse and will provide
sufficient performance most of the time. In our particular instance, we wanted to see if an
alternative index type would improve performance. The bitmap index looked like it may work;
however, at the time (version 8i), the documentation specified that it should be used on columns
“with low cardinality of values.” Our usage greatly stretched the idea of “low cardinality” but it
worked and improved performance in our particular case. Since that point in time Oracle has
eliminated the “low cardinality” recommendation.

1.5 Oracle Production Implementation

This section details the implementation of the previously described features Oracle provides as
used for our large (in excess of 11 billion records) table. The discussion also includes a general
description of the hardware, which although it has been migrated to newer hardware once, the
basic configuration was unchanged.

The original hardware implementation used a Sun Microsystems Sun Fire 6800 server with a
dual-pathed external storage array that was split into two separate partitions. By using two
partitions, we were able to maximize our use of the two pathways to the storage array, manually
load balancing Oracle’s I/O across them. Tests were performed using additional partitions but
no performance improvements were found due to being limited by two pathways.

6

Optimum performance of the storage array was attained by carefully planning the table
partitioning/indexing and manually distributing the tablespace data files across the partitions.
Generally speaking, the data files for a partition in an index were not placed on the same
partition where the table partitions data file was placed. This eliminated disk contention between
reading the index partition and retrieving the actual records from the table. Disk I/O was
monitored on a regular basis and occasional (manual) adjustments were necessary to redistribute
the data files to maintain an even distribution of I/O across the partitions.

The original hardware was replaced several years later with an SGI server using a dual-pathed,
fiber-based external SGI TP9700 storage array, which was split into two separate partitions. By
this point in time Oracle 10g was available and the Automatic Storage Management (ASM)
feature was used on raw partitions (no operating system [OS] file system). By using raw
partitions, the overhead added by using an OS file system is eliminated and any contention
between the OS performing data caching and Oracle’s caching/buffering was eliminated. ASM
provides automated I/O load balancing between available storage points (disk partitions) and,
when additional storage points are added, it will automatically redistribute the tablespace data
files across all of the storage points while the database is live. This has eliminated the manual
process of distributing the data files and monitoring disk I/O for the purpose of keeping I/O
balanced across available partitions.

The data stored in the largest table was bulk loaded by date each day, which equated to loading
roughly 60 million records a day. In most situations, the user will execute a query across all
available dates (limited to six months due to storage capacity), searching for a particular piece of
information, though occasionally the user will have a specific date range in mind. For those
reasons, the table was partitioned by date, which helps aid performance in several ways. When
the data have aged and need to be removed, the partition of interest is simply truncated, which
happens almost instantaneously with no impact on production performance. Users can greatly
benefit from this partitioning scheme if they specify a subset of the dates stored in the table.
When a date range is specified, a potentially large number of table and index partitions will be
automatically ignored by the optimizer, greatly speeding the returned matches because of the
reduced amount of data that needs to be processed during the search.

Many of the indexes used on the table are “locally partitioned” (they inherit the partitioning by
date from the table) and use bitmaps instead of b-trees. The bitmap indexes are also the most
beneficial type of index, since the search criteria specified usually specify exact values. If exact
values aren’t specified (i.e., “>=”, “<=”, etc.), full index scans may be necessary, which can
degrade search performance just like a full table scan due to the sheer size of the table and the
number of records the query may return.

7

2. PostgreSQL

PostgreSQL was selected years ago as a potential replacement for Oracle. Although an open
source database, many of the underpinnings that are unique to the commercially available Oracle
database that allow it to scale appear to be in their infancy in PostgreSQL. For example, both
support the logical tablespace method for assigning the physical storage location for a table,
although Oracle has taken it a step farther by allowing the administrator to assign multiple
separate files (data files) to a single tablespace and place those files across more than one storage
point to distribute I/O. PostgreSQL also supports table partitioning in a manner similar to
Oracle’s; however, the implementation is not quite as robust as Oracle’s but it is effective
enough to allow PostgreSQL to scale much larger than one would expect. For our testing and
eventual production implementation, we were able to apply the structure and lessons learned
while working with Oracle to PostgreSQL and achieve results successful enough to allow us
migrate our large tables to it.

2.1 PostgreSQL Database Data Storage

PostgreSQL’s storage mechanism is very simple: Each table created corresponds to one file on
disk, typically located in the same directory on an OS provided filesystem (such as ext3)
(figure 4). This layout limits one to using a single storage point unless one takes advantage of
PostgreSQL’s tablespace mechanism, which is discussed in section 2.2. The other item of
importance is that PostgreSQL does not have the concept of data files, allowing one to split the
storage for a particular tablespace across multiple storage points. This implementation thereby
prohibits one from indirectly and automatically allowing the storage and I/O for a table to spread
across multiple storage points for better performance—a table is stored in one file in one location
(even if the table eventually grows beyond a specified threshold to require additional files, they
will reside right next to the original file).

8

Figure 4. PostgreSQL storage mechanism.

In Oracle data files are pre-allocated and structured storage space for storing multiple tables.
Data files can be fully pre-allocated or they can be configured to expand in specific increases in
size, depending on how the administrator wants to manage them. Once allocated or
automatically expanded, the data files will not shrink unless the administrator intervenes.
PostgreSQL files created for storing a table will automatically expand as needed and are not pre-
allocated. Once the file has expanded they will not shrink in size unless during execution of a
routine vacuum the process is told to reclaim unneeded space.

Note: In Oracle, when a record is deleted, the space it occupies is marked as available and the
record is available for reuse immediately after the transaction is completed. PostgreSQL does
not actually delete the record and until the table is vacuumed the space taken by a deleted record
is not freed for reuse. It is therefore important to be sure to routinely vacuum a PostgreSQL
database.

Although PostgreSQL doesn’t support the data file concept that Oracle provides, it does allow
the user to spread I/O across multiple storage points, providing the administrator is familiar
enough with the usage patterns. (It is possible to make adjustments later; however, this will
require server downtime and cannot be done while the database is in use.) Each tablespace in
PostgreSQL (figure 5) can be assigned to a different storage point, and each table/index can be
assigned to a tablespace. This allows one to spread the I/O between different tables/indexes
across multiple storage points, but due to the lack of a data file implementation between the
tablespace and storage points one cannot spread a single table across multiple mount points.

9

Figure 5. PostgreSQL storage mechanism—tablespaces.

Note: A table in PostgreSQL is usually stored in one file. However, if the table grows and
reaches a threshold, an additional file may be automatically created by PostgreSQL. Once this
occurs, in theory, the administrator could figure out the name of the file, shutdown the database,
move the file to another storage point, and put a softlink from the original location pointing to
the file’s new location. This would aid in spreading a single table’s I/O across multiple storage
points but may require significant downtime to implement. There may also be structures
maintained within PostgreSQL’s data dictionary that may require alterations if this is done as
well.

2.2 PostgreSQL Table Partitioning

Similar to Oracle, PostgreSQL offers table partitioning (figure 6) to help scalability for large data
sets. PostgersSQL’s implementation is very similar to Oracle’s, with the primary difference
being an unused parent table is defined and child tables that inherit the parent’s definition are
created that actually store the data. Since PostgreSQL allows partitioning by range or list of
values, we were able to apply the same table partitioning concepts as used in the Oracle
production environment. The primary difference in implementations being PostgreSQL’s lack of
data files tied to tablespaces to easily spread data across multiple storage points for easy and
automated I/O load balancing for individual partitions. Using the provided tablespace
functionality within PostgreSQL, however, it is possible to do coarse, manual I/O load balancing.
In our usage, the creation of new partitions is fully automated and older, unneeded partitions are
dropped.

PostgreSQL does not provide a mechanism for partitioning indexes; however, indexes create off
of the child tables (not the parent) provide the same functionality.

10

Figure 6. PostgreSQL table partitioning.

3. Performance Comparisons

This section covers rudimentary performance comparisons between PostgreSQL and Oracle
using tables that contain similar data. The comparison is not apples to apples due to differences
in hardware, slight differences in the columns contained in the tables, and differences in the data
contained in the tables. Despite this, the scalability capabilities of both databases can be clearly
seen with surprisingly excellent results with PostgreSQL.

For both databases, the queries were optimized and tuned to ensure the best execution plan was
selected by the database engine and the same values were used in the search criteria. It should be
noted, however, that the times obtained for PostgreSQL are based on non-cached data and then
cached data. PostgreSQL was completely shut down and any disk cache provided natively by
the OS/filesystem was reset. This was not able to be done for Oracle as the system was in
production use and could not be shut down. The differences in the number of rows returned
between the non-cached/cached results are due to the script executions being run on different
days. The best comparison between Oracle and PostgreSQL is using the cached results for
PostgreSQL, since the Oracle database was in constant use causing the indexes/records to be in
an already cached state.

Table 1 provides general details about the queries that were performed, the number of records
returned for each, and the amount of time taken to return the complete results to the client. Each
of the queries is modeled after typical queries the users of the database would execute and are

11

specific to our data and environment. The total number of records contained in the table being
queried is shown in table 2 since the queries were executed on different database servers with
different data at different times.

Table 1. Performance testing results.

 Description Oracle Postgres
(non-cached)

Postgres
(cached)

Query 1 Search for specific
data in entire table

00:00:00.48
1,575 Rows

00:00:08.306
154 Rows

00:00:00.51
156 Rows

Query 2 Search for specific
data in entire table

00:00:08.14
36,122 Rows

00:00:10.226
1,229 Rows

00:00:00.31
1,235 Rows

Query 3 Search for range of
data in entire table

02:32:02.80
512,987 Rows

00:04:21.902
76,092 Rows

00:00:00.790
77,047 Rows

Query 4 Search for range of
data in entire table
containing two
possible values in
another column

02:29:35.62
155,725 Rows

00:00:00.253
10,599 Rows

00:00:00.248
10,670 Rows

Query 5 Search for range of
data in entire table
containing one
specific value in
another column

Not applicable due to
differences in table
columns.

00:00:00.194
0 Rows

00:00:00.185
0 Rows

Query 6 Search for range of
data in entire table
and sort results by two
columns

02:17:03.57
155,304 Rows

00:00:00.795
76,092 Rows

00:00:00.704
77,047 Rows

Query 7 Search for wider
range of data in entire
table

02:25:36.02
56,113,035 Rows

00:02:01.990ms
51,993 Rows

00:00:00.530
53,343 Rows

Query 8 Search for specific
data in entire table
within a short,
specific date range

00:00:14.02
1,437 Rows

00:00:05.398
643 Rows

00:00:00.0
643 Rows

Table 2. Totals records available during performance testing.

 Oracle PostgreSQL
(non-cached)

Postgres
(cached)

Total Rows In Table 10,741,976,021 1,943,538,432 1,969,568,640

Table 3 shows the performance of PostgreSQL with increasing numbers of records. Time did
not permit a complete test to over 11 billion records, so several tests were performed to obtain a
general idea on how it will scale under an increasing load. The third element in each results cell
is the “Seconds Per Record” (SPR), which is calculated by dividing the number of seconds taken
to execute the query by the number of rows returned.

12

Table 3. PostgreSQL scalability performance (non-cached).

Number of
Records:

1,943,538,432 2,543,159,876
(599,621,444)

2,977,695,232
(434,535,356)

(1,034,156,800)

4,072,712,960
(1,095,017,728)
(2,129,174,528)

4,535,751,168
(463,038,208)

(2,592,212,736)

5,015,713,792
(479,962,624)

(3,072,175,360)
Query 1a 00:00:08.306

154 Rows
(0.05 SPR)

00:00:12.402
179 Rows
(0.06 SPR)

00:02:06.184
208 Rows
(0.61 SPR)

00:05:17.063
244 Rows
(1.30 SPR)

00:01:47.815
254 Rows
(0.42 SPR)

00:01:47.871
275 Rows
(0.39 SPR)

Query 2 00:00:10.226
1,229 Rows
(0.008 SPR)

00:01:02.901
6,433 Rows
(0.009 SPR)

00:06:57.376
8,670 Rows
(0.048 SPR)

00:11:12.301
18,861 Rows
(0.036 SPR)

00:15:53.636
20,794 Rows
(0.046 SPR)

00:20:13.268
23,468 Rows
(0.052 SPR)

Query 3 00:04:21.902
76,092 Rows
(0.003 SPR)

00:42:35.172
143,129 Rows
(0.01 SPR)

01:59:40.575
174,350 Rows
(0.04 SPR)

00:11:43.543
351,504 Rows
(0.002 SPR)

00:41:43.623
412,166 Rows
(0.006 SPR)

00:44:26.385
437,129 Rows
(0.006 SPR)

Query 4 00:00:00.253
10,599 Rows

00:00:00.559
15,611 Rows

00:00:00.678
18,129 Rows

00:00:01.263
32,165 Rows

00:00:01.515
36,491 Rows

00:00:01.578
40,335 Rows

Query 5 00:00:00.194
0 Rows

00:00:00.429
5 Rows

00:00:00.513
8 Rows

00:00:00.992
11 Rows

00:00:01.201
11 Rows
(0.09 SPR)

00:00:01.392
11 Rows
(0.09 SPR)

Query 6 00:00:00.795
76,092 Rows

00:00:01.893
143,138 Rows

00:00:02.954
174,447 Rows

00:00:06.081
351,506 Rows

00:00:06.953
412,189 Rows

00:00:07.221
438,605 Rows

Query 7 00:02:01.990
51,993 Rows
(0.002 SPR)

00:10:43.467
9,510,209 Rows
(0.00006 SPR)

02:41:59.490
11,465,512 Rows
(0.00085 SPR)

02:57:55.705
14,860,032 Rows
(0.0071 SPR)

03:53:54.989
18,158,905 Rows
(0.0008 SPR)

02:31:30.168
21,167,720
(0.00042)

Query 8 00:00:05.398
643 Rows
(0.007 SPR)

00:00:13.163
4,215 Rows
(0.003 SPR)

00:05:54.596
6,849 Rows
(0.051 SPR)

00:13:57.877
151,139 Rows
(0.006 SPR)

00:01:41.894
16,990 Rows
(0.006 SPR)

00:02:20.556
20,553 Rows
(0.007 SPR)

Number of
Records:

6,717,884,416
(1,702,170,624)
(4,774,345,984)

7,592,138,752
(874,254,336)

(5,648,600,320)

8,405,844,480
(813,705,728)

(6,462,306,048)

Query 1a 00:01:48.481
342 Rows
(0.32 SPR)

00:00:11.216
376 Rows
(0.029 SPR)

00:01:44.202
359 Rows
(0.290 SPR)

Query 2 00:33:24.939
32,287 Rows
(0.062 SPR)

00:13:25.104
42,136 Rows
(0.019 SPR)

00:31:15.514
57,275 Rows
(0.033 SPR)

Query 3 02:10:33.369
500,771 Rows
(0.016 SPR)

02:28:18.570
621,075 Rows
(0.014 SPR)

00:43:12.716
904,779
(0.003 SPR)

Query 4 00:00:01.791
48,494 Rows

00:00:02.224
57,458 Rows

00:00:03.539
74,760 Rows

Query 5 00:00:01.781
11 Rows

00:00:01.718
11 Rows

00:00:02.380
11 Rows

Query 6 00:00:08.013
500,929 Rows

00:00:12.592
622,283 Rows

00:00:23.953
905,554 Rows

Query 7 03:55:44.623
30,688,829 Rows
(0.0004 SPR)

06:02:11.740
34,872,479
(0.0006 SPR)

b

Query 8 00:11:05.777
28,541 Rows
(0.023 SPR)

00:07:50.918
35,549 Rows
(0.013 SPR)

00:01:57.180
49,979 Rows
(0.002 SPR)

aSignificant performance degradation was seen in this particular query from the third and fourth results. It was determined that
this was caused because no queries were being performed against the database. The fifth set of results on queries similar to what
would be performed in a production environment were executed prior to running the script. The values used in the pre-
performance testing queries were not in the same range used in the queries in the performance testing script to prevent caching of
data returned in result sets in the performance testing script.
bThis query was removed from the test due to memory exhaustion on the database server. The returned result set increased to a
size that the server was unable to store in memory prior to returning it back to the client. The query was an example of an extreme
and one that is not allowed in production.

13

Figure 7 shows the response time per record for several of the queries contained in table 3. The
spike for Query 1 is explained in the footnote in table 3.

Figure 7. Time to seek and return one record.

4. Additional Key Performance Indicators (KPIs)

In addition to pure response time, there are other additional items that should be evaluated when
comparing the databases that affect the overall cost of implementation, maintenance, and
availability (uptime). Table 4 lists these items, comparing Oracle to PostgreSQL.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
e
tr
ie
va
l T
im

e
 P
e
r
In
d
iv
id
u
al
 R
e
co
rd

Total Records in Database

Seconds Per Record Returned for Each Query Vs.
Database Size

Query 1

Query 2

Query 3

Query 7

Query 8

14

Table 4. Additional issues that should be evaluated when comparing Oracle and PostgreSQL.

Issue Oracle PostgreSQL
Initial cost Significant cost for initial purchase and support. For

example, for a 4-CPU server, the initial cost for Enterprise
Edition will be $95,000 (commercial).

None unless a commercial variant is
purchased.

Support cost Significant cost for access to support/patches. For our 2-
CPU server, our annual cost is ~$25,000.

None unless a commercial variant is
purchased.

DBA time Initially requires more time for planning the install and
deploying additional applications then drops to a minimum.

Little time is needed during the
initial install and minimal time is
needed for deploying additional
applications.

SA time Minimal time beyond planning the hardware and setting it
up.

Minimal time beyond planning the
hardware and setting it up.

Patching Oracle releases patches quarterly, which results in multiple
information assurance and vulnerability assessments
(IAVAs) and requires a service outage during the update.
Typical downtime required for patching is between 1-4 h.

IAVAs for PostgreSQL are rare.
Downtime for upgrades is a few
minutes while it is shutdown and the
new binaries are installed and
PostgreSQL is restarted.

5. Conclusion

PostgreSQL is able to scale to handle surprisingly large data sets with reasonable performance
and solid stability. At the time this conclusion was written, the PostgreSQL database server has
been in production use for nearly a year. It is currently maintaining approximately 11 billion
records, limited only by disk space. A storage expansion has been purchased and it is expected
that with the additional drive space the number of records will be at least double once our
maximum retention period is reached for that data.

Using Oracle may provide a small performance gain, especially when the record set being
returned from a query is large; however, that performance gain is offset by a higher cost in both
technical support costs (required to maintain access to security patches) and the additional
downtime needed to perform routine quarterly software updates.

15

List of Symbols, Abbreviations, and Acronyms

ARL U.S. Army Research Laboratory

ASM Automatic Storage Management

CPU central processing unit

I/O input/output

KPIs key performance indicators

OS operating system

SPR Seconds Per Record

SQL search and query language

16

NO. OF
COPIES ORGANIZATION

ADMNSTR
DEFNS TECHL INFO CTR
ATTN DTIC OCP
8725 JOHN J KINGMAN RD STE 0944
FT BELVOIR VA 22060-6218

US ARMY RSRCH LAB
ATTN RDRL CIN D T PARKER
BLDG 310E RM C53
ABERDEEN PROVING GROUND MD 21005

US ARMY RSRCH LAB
ATTN RDRL CIN S P RITCHEY
BLDG 310E RM C72
ABERDEEN PROVING GROUND MD 21005

US ARMY RSRCH LAB
ATTN IMNE ALC HRR MAIL & RECORDS MGMT
ATTN RDRL CIO LL TECHL LIB
ATTN RDRL CIO LT TECHL PUB
ADELPHI MD 20783-1197

